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Nonlinear optical waveguides with periodically modulated surfaces or interfaces can support stationary
localized waves, often called gap solitons, with frequencies lying in the stop gaps of the spectrum of linear
excitations. They are solutions of evolution equations that have been derived for instantaneous Kerr-type,
thermal(diffusive) as well as instantaneous resonant and nonresonant second-order nonlinearity. A numerical
linear stability analysis is carried out for some examples of these gap solitary wave solutions based on
discretization of the spatial coordinate. In addition to numerical instabilities, which are a consequence of
discretization and which pose a problem to numerical integration schemes, weak physical instabilities have
been found, which correspond to radiation away from the solitary wave. The growth rates are strongly depen-
dent on the boundary conditions imposed at the edges of the spatial domain. Growth rates and radiation
frequencies have also been computed for an infinite spatial domain. The influence of the diffusion length on the
instability has been investigate81063-651X99)05104-]

PACS numbeps): 42.65.Tg, 42.81.Dp, 42.70.Qs, 42.65.5f

I. INTRODUCTION When the frequency of the second harmonic of the funda-
mental mode with wave vector at the edges of the Brillouin
Nonlinear localized excitations with frequencies in thezone is far from resonance with a waveguide mode, the same
stop gaps of the frequency spectrum of linear excitations of @volution equations are obtained as had been derived for the
periodic system have been observed by Chen and Mils case of Kerr nonlinearity, for which the Mills-Trullinger soli-
numerical transmission experiments of light through layeredary solutions were foun{,6] (we shall call them the MT
media with third-order nonlinearity and have been termecequations in the followingwith an effective third-order non-
gap solitons. Subsequently, they have been analyzed thebrearity. Inspired by earlier work on nonlinear waveguides
retically [2—6]. Since then, such nonlinear excitations havewithout periodic modulatiofi24], the interesting situation of
been found in several periodic systems that exhibit stop gaps (neay resonance of the second harmonic of the fundamen-
in their linear excitation spectra, mainly in connection withtal mode at Brillouin zone boundaries with another wave-
transmission through nonlinear periodic media in differentguide mode has been studi¢ti7—23, and solitary wave
areas of physicsésee, e.g.[7,8]). Research on gap solitons solutions have been found numerically and, for special
has gained new momentum since they have been verifiechoices of the parameters, analytically. For this system, mul-
experimentally in a Bragg grating fibg8]. The role of gap tistability had been studied on the basis of the same evolu-
solitons has also been discussed in transmission through p#en equationg25] as used for the determination of solitary
riodically corrugated silicon-on-insulatg60l) waveguides waves.
[10-12. While in the earlier works an instantaneous third-  While a variety of gap soliton solutions have been found,
order nonlinearity of the Kerr type had been considered, théittle is known about their stability. Apart from very recent
nonlinearity in the SOI Bragg gratings is of a diffusive type work on solitary wave solutions of the MT equatiof6],
through coupling of the light to the density of free carrierswhich makes use of the fact that these equations are inte-
and to the electronic and lattice temperatures in the semicomjrable in the limit of the massive Thirring modg27,28,
ductor[13,14. In the stationary case, this leads to an effec-information on the stability of gap solitary waves has mostly
tive nonlocal third-order nonlinearity, as will be shown be- been drawn from numerical simulations. However, it is ar-
low. Periodic systems with second-order nonlinearity havegued in this paper that simulations do not always give the
also been shown to give rise to gap solitary wa\Es-23,. right answer concerning the stability of gap solitary waves
due to the special type of instability occurring in these sys-
tems and because of additional numerical instabilities gener-
*On leave from the Institut fuTheoretische Physik, Universita ated by discretization of the spatial coordinate which is a
Regensburg, D-93040 Regensburg, Germany. feature of all common numerical methods used in the inte-
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gration of nonlinear evolution equations in nonlinear optics.
We therefore carry out a linear stability analysis and diago-
nalize the resulting non-Hermitian linear operator by dis-
cretizing the spatial coordinate. In this way, we identify
physical and purely numerical instabilities.

The term gap solitary wave is used here for spatially lo-
calized solutions of evolution equations with nonlinearity
balancing the effect of linear coupling through the grating

between the forward and backward propagating guided metal film

waves with wave vectors at the Brillouin zone boundary. x
Sometimes, the term gap soliton is also used for situations nonlinear dielectric substrate

where nonlinearity is a small perturbation compared to the

effects of the periodicity of the grating. In this regime, soli-  F|G. 1. Geometry of the system considered as an example for a

tary waves are described by the nonlinear Sdimger(NLS)  Bragg grating considered in Sec. Il 4, average film thickness
equation in the case of third-order nonlinearity and by the=24/G, periodicity of the surface corrugation.
Karamzin-SukhorukovKS) equations in the case of second-

mental waveguide mode ifguas) resonance with another — ; cosGx). The dielectric substrate fills the half spaze
waveguide mode. The stability properties of the solitary<( and the metal film occupies the regiorc@<d+ ¢(x).
wave solutions of these evolution equations are well knownrhjs system supportg-polarized guided polaritons in the
[29,30. These equations also follow from the evolution |inear Jimit also in the case of a flat metal surface. Using
and one may therefore expect that the stability behavior ojyT equations are readily derived for this system. Writing the

gap solitary waves approaches that of the soliton solutions_ 0électrical fieldE in the form of an asymptotic expansion in

the NLS and solitary wave solutions of the KS equations mpowers of a small parameter<1:

these limits.
_Throughou_t this paper, we have restricted our consider- I?ze*‘“’ot[ve‘Gx’ZE(*)(z)B+(X,T)+ve"GX’Z
ations to stationary gap solitary waves only.
In the following section, we briefly review the evolution XE()(2)B_(X,T)+3E@+0(+%)]+c.c. (2.1

equations that have been derived for the different types of
nonlinearity and comment on some aspects that do not seeffith amplitudes B.. depending on stretched coordinates
to have been appreciated in earlier works. We consider threg _ o>~ .+ 72,2 and scaling ¢(x) = 1vZZ(X)
different systems which all find realizations in slab wave- - 7

guide geometries with periodically modulated surface or in-— ¥ 0 €0SGX), one is led to
terfaces(1) guidedp-polarized plasmon polaritons on a sub-

strate  with an instantaneous third-ordefKerr-type) A+i(aA++ A+ +[Ng|AL|2+Ny|A_|?]A, =0,
nonlinearity, (2) guided s-polarized polaritons in a wave- ar 3
guide which is nonlinear due to coupling of the electric field (2.29

to a diffusive degree of freedom, arid@) guided polariton

modes interactingquas) resonantly with their second har- [ IA- IA_ 2 2 _
monic through instantaneous second-order nonlinearity. A++'(?_ s +IN1|A-[*+N| A, [*]A_=0
We emphasize that the evolution equations derived for (2.2b
these optical systems also partly apply to other physical con-
texts like guided acoustic waves, for example. after rescaling of the spatial and temporal coordinates

Section IlI is devoted to the stability analysis for solitary [X— &, T—r7, A.({,7)=B.(X,T)]. The fields
waves found to exist in these three systems, and the papekdi(+=Gx2— wqt) ]JE(*)(z) are surface polariton solutions

ends with a short conclusion. of the linearized wave equation and corresponding boundary
conditions for our system with planar interfaces, i.e., in the
Il. EVOLUTION EQUATIONS FOR GAP SOLITARY absenc_e o_f nonlinegrity _and periodic corrugation. Details of
WAVES the derivation are given in Ref34], where widths and peak
intensities of solitary waves with frequency in the center of
A. Kerr nonlinearity the gap in the linear dispersion relation have been evaluated.

In the pioneering work of Mills and Trullingef2] and The results are shown in ;I'able [, the intensityeing defined
most of the later studies on gap solitons, the Kerr type ohere asl(X,z)=2|B.(X)E.(2)|* For the dielectric con-
nonlinearity had been considered. Instead of a superlatticetant of the metal film, the simple form(w):l—wf)/w2
with periodically varying dielectric constant, we choose herehas been used with the plasma frequencig®f silver (3.78
as an example system the one described in B2, i.e., a eV), aluminum(14.97 eV}, and zinc(17.8 e\j [35]. As Kerr
dielectric medium with Kerr-type nonlinearity covered by a coefficients, the data of Ref36] have been used for the
metal film with periodically corrugated surfadégig. 1). substrate materials GaAs and InSb. Since the 1ll-V semicon-
Later, we will generalize the system by allowing for the pres-ductors allow for second-order nonlinearity in addition to
ence of second-order nonlinearity in the substrate. The cothird-order nonlinearity, these data can only be taken as ef-
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TABLE I. Spatial extensiofifull width at half maximum(FWHM)] and maximum intensity (as defined
in the tex} of gap solitons for various sets of system parameters. The linear gap addtis also given.
a=27/G is the periodicity of the grating, is its amplitude, andl is the film thickness.

a (100 nm) d (100 nm) &y (100 nm) |pax [(V/M)2] FWHM (cm) AQ (rad/s)

InSb/Ag 6.0 2.0 0.4 1.8110° 0.6 3.0x10%
6.0 2.0 0.2 9.08 10° 1.2 1.5 10
6.0 2.0 0.1 45%10° 2.39 7.410°
5.5 0.3 0.1 1.3x10° 7.6x10°% 1.9x 1013
InSb/Al 6.2 0.35 0.1 1.4810° 0.76 2.6<10%
6.2 0.7 0.1 6.9% 10° 159.0 1. 10
InSb/Zn 6.2 0.3 0.1 1.1010° 1.0 2.0x10'°
6.2 0.6 0.1 4.7%10° 231.0 8.5¢ 107
GaAs/Al 1.06 0.65 0.1 2210 0.7 2.5x 10
1.06 0.35 0.1 25101 0.0054 3.%10%?
GaAs/Zn 1.08 1.0 0.1 4210° 3760 5.x 10°
1.08 0.55 0.1 2.x10° 0.76 2.5¢ 10
1.08 0.3 0.1 2.4 104 0.0067 2.810%

fective Kerr coefficients which are, in principle, geometry These charge carriers influence the refractive index of the

dependent. This aspect will be discussed in detail in Seavaveguide directly or indirectly via the thermo-optic effect

I C. For the cases listed in Table I, the maximumlais a by locally heating the lattice. These effects can be described

function of the depth coordinateis reached on the substrate approximately by three coupled diffusion equations for the

side of the substrate-film interface. carrier concentration, the carrier temperature, and the lattice
In the limit of small nonlinearity compared to the linear temperatur¢13,14j, which are in turn coupled to Maxwell’s

coupling, Eq.(2.2) is easily reduced to a system of two non- €gquations. ) ,
linearly coupled nonlinear Schdimger equations, An important feature of these equations is the presence of

diffusion terms which may have a strong influence on the

2 spatial distribution of the intensity in a gap soliton solution.

db. 1%, : . b X
i— ¥z +[(Ny+N,)|b. |?+2N;|b-[?]b.=0. To keep the following calculations as simple as possible
at 2 g2 - - while still capturing this important feature, we consider the

(2.3)  following model, in which one diffusion equation is coupled

) ] -~ ) to the electromagnetic field in the film:
Introducing another expansion parameteand scaling the

linear interaction as~*, one finds Eq(2.3) with on . n

—+——DAn=q|E|?, (2.5
at T,
AED) -1 1 2 2
A(en)° 1)PEmreT _y [o-(67). S L Vx VXE)=— " K.nE (2.6)
(2.4 o7 2 TV XVXE)= = 5o KenE, -

It should be noted that when deriving the NLS equationswvhere A is the Laplace operator. To keep the notation
(2.3 from the MT equationg2.2), it is assumed that the simple, the dispersion of the dielectric constant has not been
dispersion of the linear modes at the Brillouin zone boundaryndicated explicitly in Eq(2.6), but will be accounted for in

is due to the fundamental Fourier component of the gratinghe following. However, we shall neglect all losses to the
with wave numbefG only. If one relaxes this condition, one €lectromagnetic field for simplicity. The quantity repre-
can still derive the NLS equatiori@.3), but the coefficient in sents either the carrier concentration, or the lattice or carrier
front of the second spatial derivative may be influenced byf€mperature. A generalization to three coupled equations of
physical dispersion, waveguide dispersion in the absence ¢f€¢ tyPe of Eq.(2.5 is straightforward. In addition to the

: : ; electromagnetic boundary conditions, we require that the
}Eg’sg;;g?i?é lfmdcti)yn f;:}g?heer (I:::Su:(;; ;odrgzgngerr:t?ngf the gratcomponent of the gradient af normal to the boundaries of

the silicon film has to vanish at these boundaries.
. . _ . ) To the coupled system of partial differential equations
B. s-polarized gap solitary waves in waveguides with (2.5 and(2.6) we may again apply an asymptotic analysis,
diffusive nonlinearity expanding the electric field as E¢2.1) and scalingn
Recently, transmission afpolarized light has been stud- =O(»?). Following the asymptotic scheme, we have to
ied in nonlinear silicon-on-insulator waveguides with peri- Solve an inhomogeneous partial differential equation for
odically corrugated surfaces. The geometry is similar to thafi(X,z) to second order in the expansion parameteand
of Fig. 1 with the metal film now replaced by a silicon film insert its solution into Eq2.6). The compatibility conditions
and the dielectric substrate replaced by a thick,3&9er on  for the solvability forE(® then yield the evolution equations
a silicon substrate. In these systems, the optical nonlinearit{2.2) with coefficientsN; andN, depending omw,, G, the
results from free carriers generated by the light intensityrelaxation timer, , and the diffusion constarm.
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For large diffusion constants, the coefficieis and N,
become equal. While in the above treatment, the variation
of the quantityn on long time and long length scal&@sandX
follow those of the intensity of the light, this is not necessar-
ily the case for large diffusivity. In order to account for this

effect, we introduce a different scaling of the parameters in

Eq. (2.5 by writing it in the form

L,

voom +n—v_4DTrAn=Tra|é|2.

(2.7
Expandingn= »?n(®+ 1*n(®)+ O(»*) and inserting this to-
gether with Eq.(2.1) into Eq. (2.7), one finds than® is
independent of the short scales, and

2
b+ T p oayp=[ AL 2HA 2], (28
aT 9€
where 7T, éxX,p(&7)n@(X,T), and A.(&7)
«B.(X,T). This equation is coupled to the two equations
for the field amplitudes,

dAL IAL
=+
ar — o€

+

A +i +SpA. =0, (2.9

where S=*1. In the following, we consider the positive
sign only. Equation2.9) is obtained by inserting Eq2.1)
and the expansion farinto Eq.(2.6) and applying the usual
multiple-scale procedure withi=v?t andX=v?x. The res-
caling leading fromT,X,n® B, to 7,£,p,A. has been
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A, (0)F%, p(0)

FIG. 2. Maximum values of the field intensity{A. (0)|?,
dashed curveand of the carrier concentratigp(0), solid curvg
as a function of the diffusion lengtik (arbitrary unit$ for gap
solitary wave solutions of Eq$2.8) and(2.9) with frequency in the
center of the gapd=0).

establishes a relation between the valuep ahd the imagi-
nary part ofU at £=0.

Figure 2 shows the maximum values of the intensity
|A.|? and the variablg as a function of the square of the
diffusion lengthx. As may have been expected, the width of
the stationary solitary wave solutions increases with increas-
ing diffusion length. As may be seen from Fig. 3, this is
much more the case for the quantjtythan for the intensity
|A.|? of the electromagnetic field.

We note that in Egs.(2.89) and (2.9, the charge
TTIAL(&7)|?+|A_(£,7)|?]dé is a conserved quantity,
while energy and momentum conservation only hold in the

made to eliminate constant coefficients from the evolutionimit 7z=0. _ . _
equations. The remaining parameters are the effective diffu- In addition to the stationary solutions found by Mills and

sion lengthx and relaxation timerg . In the limit 7g=0, the
variablep is readily eliminated to yield two coupled evolu-
tion equations of the forng2.2) with, however, a nonlocal
nonlinearity,

17

_

Ai(§17)+i(&7— ag)A+(§lT)

+%f:e*'ﬂ"’“[lwf',r)lz
+HA(&,7)PldE'AL(E,1)=0. (210

In order to find stationary solutions to Eq2.8) and (2.9

that correspond to the gap solitary waves found by Mills and

Trullinger in the limit «k=0, we start with the ansatz
AL(En)=UHe 7, A_(§m)=U*(§e T
(2.11

and requirep to be independent of. Furthermore, we im-
pose the condition that the real partldfis an odd function
while its imaginary part is an even function éf The diffu-
sion lengthx sets here an additional scale for the width of
spatially localized solutions. The conservation law

2
U2+ (U*)2+2(p+8)|UJ2+ %

(2.12

Trullinger, moving solitary solutions have also been found
[6] for the two coupled equation(®.2). Analogous solutions
of Egs.(2.8) and (2.9 would be attenuated due to the time
derivative occurring in Eq2.8), which is not effective in the
stationary case.

C. Quadratic nonlinearity in the nonresonant case

In the presence of second-order nonlinearity, the electro-
magnetic wave with frequency, generates a second har-
monic. We first consider a situation in which this second
harmonic is not resonant with a waveguide mode, which

8

FWHM

10 15
FIG. 3. Full width at half maximum of the field intensity
(|A+|?, dashed curyeand of the carrier concentratiomn,( solid

curve), associated with a gap solitary wave solution with 0, as a
function of the diffusion length¢ (arbitrary units.
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. next step, the solutions of EqR.14 and(2.15 are inserted
(&) non-resonant (® resonant into the field equations of orde®(»°) in the asymptotic

-

o __ﬂ/’ o procedure, which are projected on the modal fié&%’(z)
. to obtain again the evolution equatio(&?2). However, the
/ " V coefficientsN; andN, can be modified due to the feedback
k p y of the second harmonic on the fundamental wave. Depending
/ NV on the symmetry of the tensog{),), both coefficients or
only one of them may be affected. If, for example, the cou-
‘ ‘ pling constants((jﬁ)y are nonzero only if the Cartesian indi-
G/2 G k G/2 G k cesa, B, andy are pairwise distinct, the right-hand side of
_ _ _ Eq. (2.14 vanishes while the right-hand side of EQ.15
F_IG. 4. Nonresonantleft) _and re_sonan(rlght) |ntergctlon of does not. Consequentlyy, remains unchanged, whill,
carrier wave.con.]ponents with their second harmoryc, schemati: ay be modified by the quadratic nonlinearity. Nf, is
ﬁsg’r TE%;Z'?L‘J&ZZS represent parts of the dispersion curves of,jified it will necessarily acquire an imaginary part in our
9 : waveguide system. This is due to the fact that two counter-
propagating guided waves generate bulk waves that radiate
pehergy into the substrate and into the vacuum. In order to
satisfy the boundary conditions at the surface and at the in-

. . terface, the solution of Eq2.14) contains a component of
frequency equal or close tou® in the absence of nonlinear- s , . i ,
ity and periodic modulation. the form&&exp(qsz) in the substrate anéVexp(-igy2) in
In this case, which is illustrated schematically in the leftthe vacuum region, whergs=2wove /c andqy=2w,/c.
part of Fig. 4, the second harmonic can be included in thd!n the substrate far from the surface, is assumed to be
asymptotic expansiof2.1) by adding to the right-hand side independent ofz) Such a plane-wave component is not

situation has also been treated in Rdf5]. As an example,
we choose again the waveguide system of Fig. 1. We assu
that there is no waveguide mode with wave vectd® and

of Eq. (2.1) the term present in the solution of E§2.15 unless one is in a regime
where Cherenkov radiation of the second harmonic takes
e~ 2lool[ VZeiGXé<+2v2>(z)Bi(x,T) place. Therefore, the coefficie; is normally real. The
imaginary part ofN, can be associated with the energy flux
+12e 7 IGXE(-22(2)B2 (X, T) into the substrate and vacuum in the following way: We

22002 . multiply Eq. (2.14 by E®?* | sum overa, and integrate
+vETY(Z) B (X, T)B_(X,T)+O(v*)]+c.c. (213  overzfrom —H to +H, where 1H is much smaller than the

e > . . decay constants of the guided wave fielH§") in the
(¥2,2) (0,2)
The functionskE and E are solutions of the field vacuum and the substrate. Integrating once by parts and sub-

equations to second order in the expansion parametard tracti . : ; -
. o . racting the conjugate complex yields the following equation:
the corresponding boundary conditions at the planar inter- 9 119 plexy geq

faces and at infinity. These field equations have the form wg H
p -8 J ] % X2 EQ?* (2)ELN (2)E(2)dz—c.c.
“Ha By

2(1)0 2
[sL<2wo>(T) +<1—5az>ﬁ] EQ? ’

J
) => [E®2*(2) —E®2(2)| -c.c. (2.16
2(1)0 a Jz _
- ‘(_) 23 XZEES (214 "
¢ By For H sufficiently large, the integral on the left-hand side

becomes independent bf, and we may extend the integral

2(1)0 2 + . .
> {eL(2wo)| —] s to + o to obtain finally
B c )
Lo (7 _
BN NN R 4i f (2) 0% AEH)(Z2)EC)(z)dz+c.c.
+Ey V(}/)V()éaﬁ_vz)v(ﬁ)] E(B,Z,Z) Ef —wa,EB,y Xapy=a (2) B (2) y (2)
2w\ ? @) =(5)e(2) =—[&V|2qy—|£9)2qs. (2.17
T (T 52,7 XaprEp By 219 The left-hand side of Eq2.17) is the imaginary part of the

correction to the coefficienN, in the evolution equations
Here, e () is the linear dielectric function which depends due to quadratic nonlinearity. The right-hand side is obvi-
on frequency and on the spatial coordinza,ttalne)((jﬁ)7 arethe ously the energy current into the substrate and the vacuum
coefficients occurring in the second-order term in the expangenerated by the counterpropagating guided medés. In
sion of the pOlaI’ization with reSpeCt to the electric f|e|d, andan ana'ogous way, it is shown tml is real. The imaginary
B,y are Cartesian indices. In addition, we have definechart of the coefficienN, gives rise to damping of nonlinear
V{¥)==iG, V{")=0, andV{") = d/dz. The inhomogeneous modes which depends on their amplitudes.
equations(2.14) and (2.15 can be solved in a straightfor- The two substrate materials considered in the examples of
ward way. The boundary conditions at the interfaces and atable I, GaAs and InSb, have been treated as Kerr materials,
z=+o guarantee the uniqueness of their solutions. In thalthough they also have a nonvanishig). We repeat that
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the experimental values of Ref36] for the intensity- group velocities of the linear waveguide modes with wave
dependent refractive index used for the data presented wectorG andG/2 in the absence of periodic modulation.
Table | have to be regarded as effective Kerr coefficients Solitary wave solutions of these equations have been
which, in principle, depend on the geometry of the wave-found by several authofd7-23 numerically and, in certain
guide. special cases, analytically. In addition to stationary solutions,
even moving solitary waves have been determir&g]. The
D. Resonant interaction with the second harmonic stationary ones, to which we confine our attention here, can
. . .be obtained by a reduction of ER.19 to ordinary differ-
By choosing the materials and the geometry appropri-. .. : .
) : i . .ential equationgODES via
ately, the dispersion curves of the guided modes in multi-
mode systems like our example system of Fig. 1 can be

arranged such that the second harmonic of a guided mode U.(§7)=U.(£e", (2.203
with frequencyw, and wave vectoK is resonantor almost
resonant with another guided mode, i.e., there is a guided W (&7)=W.(&)eor (2.200

mode having wave vectdt=2K and frequencyo~2w,. If _ .
now a periodic grating is ruled on the surface with periodic-2nd the requiremeri . =U*=U and W, =W =W. The
ity a=27/G and K=G/2, then a gap will open up at the resulting ODEs have the conserved quantity
frequencywg in the usual way, due to the linear interaction

of the mode having wave vectdét=G/2 with the counter- U2+ (U*)%+ A*W2+A(V\/*)2—25|U|2—2;|W|2
propagating mode having wave vectofG/2 via the grating. 5 o
Similarly, a frequency splitting can occur due to linear inter- +2WFUS+2W(U™)7, (2.2

action between the modes with wave vedBband — G (see — . .
right part of Fig. 4. If, in addition, second-order nonlinearity Wheréw=u+4«4. An example of such a stationary solitary
is present and symmetry allows for it, the mode with waveave is shown in Fig. @). We note that in the limib =0,
vectorK interacts with the mode having wave vectdt 2nd the ODES resulting f_rom the reductid@.20) can be trans-
in the same way, the mode with wave vectoK interacts formed into Eqs(11) in Ref.[37]. For these equations, ana-

with the mode having wave vecter 2K. This (quas) reso- Iytic solutions and a detailed discussiop are given there. .
nant interaction has to be accounted for in our asymptotic " lthe sa;ne way as the ,MTf equations can be ﬁpﬁ’_ro?("
procedure by including the terms mately transformed into a pair of NLS equations in the limit

of weak intensities, the evolution equatiof@s19 reduce to
e—;t[ VelSXE@H)(2)B, (X, T) the KS equations in this limit, when _the frequencies of the
fundamental and the second harmonic are close to the edges
+ Ve*‘GXE@*)(z)NB,(X,T)]+O(v2) (2.18 of the linear gap$18]. For example, when is real and the
modulus of A=(u—A)/(2k)+2 is much smaller than 1,
in the expansior(2.1). E©*)(z) are the modal fields of the one obtaing17]

waveguide modes with wave vectatsG and frequency.

Furthermore, we use the scalidg=vx and T=wt for the . d 92
. o~ ) i—A- - —5A+2BA*=0, (2.2239

stretched coordinates a@ix) = »{(x) for the surface profile ar 2 9¢&
function to ensure that the dominant effects of quadratic non-
linearity and periodic corrugation are of the same order of 2.2 2

. - - .4 2k“v° 4
magnitude. Going now through the usual multiple-scale pro- 2ik—B— —— —»B—2kAB+A?=0 (2.22h
cedure, one obtains after rescaling and simple transforma- aT A 9¢

tions of the phases for the variables A=(1/2)(u,+u_)exp(—in and B

=(1/2)(w . +w_)exp(—2i7).

{ou, du, .
u_+i g +a—§)+2w+u+=0, (2.193
I1l. STABILITY ANALYSIS
U, +i ‘M_—_au_—) +ow_u*=0 (2.19b To investigate the stability of the solitary wave solutions
ar 9§ - found by solving the ordinary differential equations resulting
from Eq.(2.19 via the reduction(2.20), we have carried out
o[ OWy o dWy 2 _ long-time numerical simulations by integrating the coupled
Aw_+2ik or tu JE UL —uw, =0, evolution equation$2.19 using a split-step Fourier scheme
(2.199  with initial conditions corresponding to a stationary solution.
The results of these simulations were not conclusive. Even
" . [ OW_ IW _ 2 _ when a stationary solution appeared to be quite robust
A*w.+2ik| —— v T9E +uZ—uw_=0. against perturbations of its initial conditions on a short-time

(2.199  scale, it showed a sudden breakup on a long gcalgs time

units for the solution shown in Fig.(8] with strong spatial
The functionsu..(¢,7) are related td..(X,T) andw..(§,7)  fluctuations. Similar phenomena, albeit on an even longer-
to B (X,T). The parameters, u, andv are real, whileA is  time scale, were observed for certain solutions of the MT
usually complex. In particular; stands for the ratio of the equations. It was impossible to decide from the results of the
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simulations whether these breakups are the result of the nu- 9
merical scheme used for the integration of the partial differ- - (9_§+2W”
ential equations, or whether it is the consequence of a physi-

cal instability. In order to clarify this question, we have 0
carried out a linear stability analysis for stationary localized

solutions of the four coupled equatiof&19 as well as of A=
the MT equations. We describe this analysis in some detail
for the case of Eqs2.19. The procedure is analogous for

_2U/I

d
—— 2w’

23

0

2U n

0

d

—2KU —

3
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—2u”

— A"

the MT equations. We write

U=(§7)=[UL(§)+a.(¢)]e”, (3.1

W (£,7)=[W=(£)+b.(£7)]e??, (3.1b

and decompos@. and b. into their real and imaginary

d
2KV —

23
(3.7)

Here, a prime and a double prime denote again the real and
imaginary part, respectively. The matit is obtained from
H, by changing the sign in front oiV'.
With the ansatp(¢&,7)=q(&)exp(7), Eq. (3.3 becomes
a non Hermitian eigenvalue problemg=Lqg, where L

O ZU ”n A//

parts, denoted by a prime and a double prime, respectively=J ‘M. The components of the vectprwill from now on

We then linearize Eq(2.19 with respect to the eight vari-

ables a,, a%, b., bL. Definihg the eight-
component vector
p=(a},a_,b’ b’ ,a% ,a” b’ ,b") (3.2

one is led to the following system of linear equations:

d
J--p=Mp. 3.3
Here
0 K
J= K 0 (3.9

and K is a diagonal &4 matrix with K;;=K»=1 and
K33=Ky4=2k. The matrix operatoM has the form

M:

H A
( : (3.5

A" Hy)’

whereH; andH, are two Hermitian operators amil is a
matrix non-Hermitian matrix operator. Explicitly,

be regarded as complex quantities. Sida@ndM are purely
real, real solutions of Eq3.3) are obtained from a complex
one by forming linear combinations pfandp*. The struc-

ture of Eq. (3.3 is distinct from the linearizations of the
nonlinear Schrdinger equation and the Karamzin-
Sukhorukov equations because of the presence of the non-
Hermitian operatoA. There is no reason to assume that the
squares of the eigenvaluasare real for the MT equations
and the evolution equatiorf2.19. Therefore, the method of
Pelinovsky, Buryak, and KivshdB0] (see alsq31]) for the
determination of the boundary between stable and unstable
regions in parameter space cannot be applied here. Within
this method, the stability boundary is determined from a
compatibility condition arising in an expansion in powers of
the eigenvalue. near the stability boundary. In the systems
considered here, the eigenvalue associated with an instability
may have a larg€and unknowp imaginary part near the
stability boundary.

In order to determine the spectrum of the non-Hermitian
operatorL, we discretize the spatial coordinage i.e., we
work with grid pointsé,=nA¢, wheren=0,£1,+2, ...,
+N. (In the actual calculations, the grid was shiftedog/2
for numerical convenience.

All common numerical schemes employed for the integra-
tion of nonlinear evolution equations of the type considered
here are based on a discretization of the spatial coordinate.
However, there are various ways in which they deal with
spatial derivatives of a functiof(£). The simplest is to re-
place 9f(£)/9¢ at grid point £=nA¢ by {f([n+1]A¢)

—5+2W' 1 20" 0 . T
—f([n—1]A¢&}/(2A¢). We call this the derivative of
1 -6+2W' 0 2U’ type .
Hi= 2U’ 0 _; A (3.6 Semispectral methods usually work with a regular grid,
, ) _ too. Their treatment of the spatial derivative corresponds to
0 2U A M replacing odf(§)/oé at grid point £=nA¢ by
—iZN"1 Dnamf(MAE) with
1 for m=n
—1ar
D= Si m-—n)/N 3.8
MONAE| (—1)™ " 1—i L VN for m#n 38

1—cog w(m—n)/N]
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forming a self-adjoint matrix. This way of discretizing the well as to the way the spatial derivative is treated, and they
spatial derivative will be called the derivative of type II. are obviously a consequence of the discretization and corre-
In the semispectral methods and hence in the treatment apond to numerical instabilities. They occur even in the in-
the derivative of type Il, periodic boundary conditions aretegrable caseN;=0, which corresponds to the massive
implied, f(NA&)=f(—NAE). For the derivative of type I, Thirring model. This means that numerical integration
various boundary conditiongincluding periodi¢ can be schemes can face instabilities in long-time simulations of
specified. When the solitary wave solution is centered at solitary pulse propagation with the evolution equati¢22)
=0 andNA¢ is much larger than the spatial extent of theand (2.19 in contrast to the NLS and KS equations. They
solitary wave, one would expect that the qualitative featuresnay perhaps be avoided by introducing spatial smoothing on
of the spectrum of the discretized operdtoare independent a short length scale.
of the boundary conditions. This turns out to be the case for Other eigenvalues with nonzero real part have eigenvec-
the NLS and KS equations, but not for the MT equations andors that are largely localized at the edge of the spatial do-
Egs.(2.19. main, i.e., they are appreciably different from zero only at
One consequence of discretization is the introduction of~=*=NA¢. They are a consequence of the finite range to
an upper bound to the continuous and purely imaginary pamvhich we have limited our analysis up to now.
of the spectrum ot associated with scattering states. The In addition to the eigenvalues with nonzero real part that
corresponding eigenvectors are a superposition of planare associated with purely numerical instabilities, there can
waves at large distances from the solitary wave solution. Irbe a few that have a physical interpretation. Their associated
addition, the restriction to a finite domaiffinite N) dis-  eigenvectors vary slowly on the scale¢ [Fig. 7(b)] and
cretizes this part of the spectrum. We emphasize that whehence become independent of the discretization for suffi-
using the term finite spatial domain, we always mean that theiently smallA¢. However, for distanceg far away from
boundaries of this domain are far remote from the center ofhe solitary wave solution, they do not fall off to zero as in
the solitary wave solution such that the solitary wave fieldthe case of the KS equations, but they are of oscillatory
has fallen off to virtually zero at these boundaries. character. In fact, they are a superposition of generalized
We have determined the spectrum of the operhtafter  plane waves with complex wave numbérthat follow from
discretization for various examples and have investigated itthe secular equation
dependence on the two parametrandA&. A typical ex- ~
ample for the KS equations and a solitary wave solution in IL(k)—\1/=0, (3.9
the unstable region of the parameter space is shown in Fig. 5.
In addition to the purely imaginary part of the spectrum,Wherelis a unit matrix and_(k) is the matrix obtained from
there are two real eigenvaluks= = |\|. Their modulus isin the operatoL by settingU’=U"=W'=W"=0 and replac-
perfect agreement with the growth rate given in Fig. 2 of S0E
Ref. [30] for this case. : (e)
Figure 6 shows the spectrum for a gap solitary wave so- E
lution of the MT equations. The symmetry of the MT equa-
tions implies that ifA=\"+i\" is an eigenvalue, so are :
N —iN"and—\"=i\". In addition to the purely imaginary = 0Fe ¢ €
part of the spectrum, a large number of complex eigenvalues g
appears, having small real parts but large imaginary parts.
With increasing refinement of the discretization and increas-
ing rangeNA £, some of these eigenvalues move towards the
imaginary axis. Most of the eigenvalues with nonzero real
part are associated with eigenvectors that show rapid oscil-
lations and normally change sign between two adjacent grid

20t . . . . .
~0.15 -0.10 —~0.05 0.00 0.05 0.10 0.15
y

points[Fig. 7(a)]. They are sensitive to the paramefef as 601 )
300¢F T 401 ® 698 $¥o @ ]
200 20} ]
100k ~ ofs sso oo 8
SR S o -20F 7
400; a0l PO 80 ;
o i —60t . . . ]
-200¢ —0.04 -0.02 0.00 0.02 0.04
~300¢ . ‘ . A
-0.2 ~0.1 0.0 0.1 0.2

FIG. 6. Eigenvalues of the operatbrfor a solitary wave solu-
tion of the MT equations(2.2) with parametersN;=3, N,

FIG. 5. Eigenvalues of the operatbrfor a solitary wave solu- =1, §=-0.1, A£=0.08, N=100. (a) Derivative of type I,
tion of the KS equations witle=0.05 andoc=2 (parameters de- (b) derivative of type Il. Eigenvector components associated with
fined in[30)). eigenvalues represented by a star are shown in Fig. 7.

3\
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0.10 pulse. Therefore, the eigenvalaestrongly depends on the
, ] boundary conditions and on the size of the spatial domain.
0.05LC ] Solitary waves that are linearly stable for a certain domain
: ] size may be unstable for another. This effect has also been
i [ observed in discrete systemi38,39. It has to be kept in
g 0.00F ] mind when interpreting the results of numerical simulations
i ] that necessarily have to be carried out on a finite domain. For
—0.05} . parameterdN,/N;=2 andA =0, an instability of the gap
: soliton solution of the MT equations has been found on a
_g.10t , , , ] finite spatial domain, while this solution is predicted to be
10 _5 0 5 10 stable on an infinite domaif26].
£ The spectrum of the operatdr for solitary wave solu-
tions of Egs.(2.19 and the corresponding eigenvectors have
0.08¢ ] structure similar to the ones discussed for the MT equations.
0.06 ¢ E At large distances from the solitary wave solution, the com-
0.04F E ponentsa. associated with the fundamental frequency de-
0.02F 3 couple from the components. corresponding to the second
000 ] harmonic, and the secular equati¢d.9) factors. Conse-
: ] quently, either the componerds. or b.. are of nearly plane-
-0.02F ] . .
. ] wave character at large distances, while the other ones are
—0.04¢ E localized at the solitary wave solution.
-0.06 ] Growth rates for an infinite spatial domain may be com-
-0.08¢L ; : ‘ : puted generalizing a simple method that had been developed
=10 =5 0 5 10 earlier for a discrete systemi38]. It is based on an
¢ eigenvalue-dependent boundary condition that simulates the
08T . . infinite spatial domain. We describe this approach here for
P (e ] Egs. (2.19. At large distances from the solitary wave, the
O~6:‘ ] eigenvectorg associated with a complex eigenvalhehas
04l 1 the form
< 0.2F b 4 .
: ] (&)= 2, cieiMaw(n), (3.10
0.0p ] =1
-0.2+F : where kj, j=1,...,4, are thesolutions of the secular
_04rt . , . ] equation(3.9) that correspond to exponentially decreasing
10 -5 0 5 10 partial waves in the direction away from the solitary wave,
3 andw; is the nontrivial solution of the singular linear prob-
I
FIG. 7. Eigenvectors associated with certain eigenvalues shownern
in Fig. 6. (a) Real part of the components, of the eigenvector [E(kj)—hl]WFO, (3.1

corresponding to the star in Fig(&d. (b) Real part(solid and

imaginary pari{dasheglof a, associated with the lower star in Fig. normalized in an appropriate way. The coefficienfs |
6(b) [same as star in Fig.(8]. (c) Corresponding solitary wave —1 4 arestill unknown. When discretizing the spatial
solution having the forni2.11). Real par(solid) and imaginary part .o dinate¢, we use version | of the discretized derivative,

(dashedl of U are shown for comparison. replace the derivativeq(&)/d¢ at é=NA¢ by
ing the derivatived/ ¢ by ik. [In the case of the KS and MT 1 (& . ik (VA
equations, these arex#4 matrices while in the case of Egs. 2AE ;l ;"™ wi(N) —q([N—1]A8) ¢, (3.12

(2.19, they are &8 matrices] As the eigenvalue. has a
small real part, the wave numbekshave to be expected to
have small positive as well as negative imaginary parts. Th
physical interpretation of these eigenmodes is the following:
The solitary wave is unstable and emits radiation with fre- 4
quency\” and (rea) wave numbersk’ obtained from the CI(NAS):E Ejo(?\)- (3.13
solutions of Eq.(3.9. In a finite spatial domain, this radia- i=1

tion gets reflected from the boundaries, and the reflected _

wave components interfere with the wave field in the neigh-The four coefficients; are actually overdetermined by the
borhood of the solitary wave solution. Similarly, in the caseeight linear equation$3.13. In practice, we include in the
of periodic boundary conditions, the radiation leaving thesum on the right-hand side of E(B.13 the four exponen-
periodicity domain on one side and reentering it on the othetially increasing partial wavesj€b>5, ... ,8), invert the 8
interferes with the wave field at the position of the solitary X8 matrix with column vectorsv;, j=1,...,8, anddis-

and express the coefficien"t#, j=1,...,4, interms of
e components of the vectq({NA ¢) through the relation
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0.10: (a)

0.05F 1

~0.05}

-0.10L . .
-15 =10 -5

-0.05}

~0.10L . . : .
-15

-10 -5 0 5 10 15

FIG. 8. Eigenvector corresponding to the eigenvaluye0.048
+i0.755 for a solitary wave solution of Eq2.19 having the form
(2.20. Parameters6=0.8, v=0, «=0.5, wu=4, A=1(in-
finite spatial domain (a) Real part(solid and imaginary part
(dasheglof a” . (b) Real part(solid) and imaginary partdasheg of
b” . (c) Corresponding solitary wave solution. Solid, real partof

dotted, imaginary part of); dashed, real part dV, dashed-dotted,

imaginary part ofw.

card the coefﬁcienféj with indicesj = .,8. Inthis way,
we have eliminated)([N+1]A¢) in favor of q(NA¢). We
proceed in the same way with the derivativeéat — NA ¢
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0.15 ' '

[ (0)

0.05 S

FIG. 9. Dependence on frequency of two eigenvalues of the
operatorL for stationary solitary wave solutions of Eq2.19 in an
infinite spatial domain. Parameters=0, «=0.5, u=4, A
=1. Gray: radiative regime.

valueA~0.048+i0.755 corresponding to an instability of a

solitary wave solution with profile also displayed in Fig. 8.

While the componentd.. associated with the second har-

monic are localized in the region of the solitary wave, the
components.. are spatially extended and decay slowly with

increasing distance from the solitary wave. Making use of
the smallness of the growth raié in comparison tg\”|,

we may expand

KA +iN") == &;(N") +iN's;(\") + O((X")?)
(3.19

with real wave numberg; and real inverse group velocities
sj . The perturbatiop(¢,7) at large distances from the soli-
tary wave may then be written in the following approximate
form:

p(£,m)~2, cjet Tside I EN Dy, (3,15
J

and are left with an eigenvalue problem of a non-Hermitian
[8(2N+1)]X[8(2N+1)] matrix, which depends, however,
on the eigenvalug via the wave numbers; and the vectors which supports the interpretation of the solitary wave radiat-
. Starting with an initial guess fox and its associated ing plane waves having envelopes that move with the group
e|genvector one may use the inverse iteration scheme duelocmess
scribed in Ref[40] with the modification that in each itera- In Fig. 9 the dependence of two eigenvalue®n the
tion step, thex-dependent parts of the matrix have to befrequency of the gap solitary wave solutions is shown. The
updated 38]. It has to be noted that the convergence of thisparameters in Eq$2.19 have been chosen to be the same as
procedure depends on the initial guess for the eigenvalue arfdr the solution shown in Fig.(8). By letting § vary between
eigenvector and cannot always be achieved. 1 and—1, we sweep the frequency of the fundamental com-
Figure 8 shows the resulting eigenvector for the eigenponent of the solitary wave through the gap. With decreasing



4628 J. SCHQ.LMANN et al. PRE 59

1.5] ' ' ‘ ] sion termsD 9?A, 19&? in Eq. (2.29 andD d’A_ /€2 in Eq.
1 (2.2b. They call the solitary wave solutions of the MT equa-
tions (2.2) “structurally unstable,” because they found that
< 1.0 no branch of solitary wave solutions of the extended evolu-
= tion equations approaches the MT solutions in the liBnit
x I —0. However, it has to be noted that addition of the above
8 05 dispersion terms removes the gap in the linear dispersion
a I relation. Consequently, solitary wave solutions of these ex-
- tended equations have an exceptional character comparable
0.0l . . . to intrinsic localized in-band modes in discrete lattices and
0.00 0.10 0,220 0.30 0.40 generalized nonlinear Schiinger equation$42,43.
K
FIG. 10. Dependence of the eigenvaldeon the diffusion IV. CONCLUSIONS
length « for stationary solitary wave solutiorn2.11) of Eq. (2.10
with 6= —0.1; solid, real part; dotted, imaginary part. In summary, stationary gap solitary waves have been dis-
cussed as solutions of evolution equations derived for ex-
8, the growth rates\’ diminish. Shortly after a curva”  ample Bragg gratings in the form of slab waveguides with a

versusé enters the white triangle from the right in Figh§,  periodically corrugated surface. Plasmon polaritons propa-
the corresponding growth rak€ becomes zero. Within this gating in a metal film on a nonlinear dielectric substrate were
white triangle, the frequencyy=\" of the perturbation considered as well as SOI structures. The evolution equa-
a. (& 7)€’ of the solitary wave’s fundamental component tions contain third-order nonlinearityconventional “gap
is in the gap of the fundamental mode and consequentlysolitons”), nonlinearity due to coupling of the electromag-
q(¢) decays exponentially away from the solitary wave so-netic field to a diffusion equation, which may be considered
lution even ifA’=0. On the left side of the value af at  as a simple model for the SOI structures and which gives rise
which\’ has become zera,” is the relative frequency of an to an effective nonlocal third-order nonlinearity, nonresonant
internal mode of the solitary wave solution. This scenario issecond-order nonlinearity, which gives rise to an effective
very similar to the one found by Barashenketal. for the  third-order nonlinearity with a complex nonlinear coupling
MT equationg 26]. The two\"” versusés curves of Fig. &) coefficient, and resonant coupling to the second harmonic via
terminate at the left boundary between the white triangle andecond-order nonlinearity. The stability of solitary solutions
the radiative regime. Beyond this boundary, there may bef these equations has been investigated via a numerical lin-
resonances in the continuous spectrum of the opetdator ear stability analysis. Confirming analytic work on the sta-
which would form a continuation of these two discrete bility of MT solitons [26], it reveals an instability associated
branches of eigenvalues. Fé« 0, no instabilities have been with a complex growth rate with small real part. This has
found of the solitary wave solution of E€R.19 with param-  important implications for numerical simulations as this
etersv=0, k=0.5, u=4, A=1. Although our search growth rate is sensitive to the boundary conditions at the
procedure does not guarantee finding all possible instabiliedges of the spatial domain. This type of instability has been
ties, there is a high probability that the center of the gap ( encountered earlier in various continudiesy.,[44—47) as
=0) is a boundary of stability for this set of parameters. Wwell as discretd38] systems. Also, numerical instabilities
In the same way, this type of instability on an infinite arise in such simulations that cannot occur in systems like
spatial domain has been investigated for the MT equationthe nonlinear Schdinger and Karamzin-Sukhorukov equa-
(2.2). Its occurrence foN;#0 and sufficiently negative val- tions.
ues of§ have been predicted by Barashenleial.[26]. For
example, in the casd;=N,=1 and§=—0.1, an unstable
mode exists with eigenvalue~0.013+i1.0. The MT equa-
tions (2.2) with N;=N, are obtained from the evolution We would like to thank D. Pelinovsky for sending us
equationg2.10 in the limit of vanishing diffusion lengtlx. results prior to publication, D. Bonart for helpful discussions,
The growth rate\’ has been found to decrease rapidly with I. Barashenkov for a helpful remark on the manuscript, and
increasingx reaching zero ak~0.4 (Fig. 10. This suggests Yu. Kivshar for a useful comment. Financial support from
that a finite diffusion length« seems to have a stabilizing the Deutsche Forschungsgemeinsché@®raduiertenkolleg
effect on the gap solitary solutions. Komplexita in Festkopern: Phononen, Elektronen und
In a very recent work41], Champneyst al. searched for ~ Strukturen, and Grant No. Ma 1074/8 gratefully acknowl-
solitary wave solutions of Eq$2.2) with additional disper- edged.
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