
PHYSICAL REVIEW E APRIL 1999VOLUME 59, NUMBER 4
Stability of stationary gap solitary waves at periodically modulated surfaces
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Nonlinear optical waveguides with periodically modulated surfaces or interfaces can support stationary
localized waves, often called gap solitons, with frequencies lying in the stop gaps of the spectrum of linear
excitations. They are solutions of evolution equations that have been derived for instantaneous Kerr-type,
thermal~diffusive! as well as instantaneous resonant and nonresonant second-order nonlinearity. A numerical
linear stability analysis is carried out for some examples of these gap solitary wave solutions based on
discretization of the spatial coordinate. In addition to numerical instabilities, which are a consequence of
discretization and which pose a problem to numerical integration schemes, weak physical instabilities have
been found, which correspond to radiation away from the solitary wave. The growth rates are strongly depen-
dent on the boundary conditions imposed at the edges of the spatial domain. Growth rates and radiation
frequencies have also been computed for an infinite spatial domain. The influence of the diffusion length on the
instability has been investigated.@S1063-651X~99!05104-1#

PACS number~s!: 42.65.Tg, 42.81.Dp, 42.70.Qs, 42.65.Sf
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I. INTRODUCTION

Nonlinear localized excitations with frequencies in t
stop gaps of the frequency spectrum of linear excitations
periodic system have been observed by Chen and Mills@1# in
numerical transmission experiments of light through laye
media with third-order nonlinearity and have been term
gap solitons. Subsequently, they have been analyzed t
retically @2–6#. Since then, such nonlinear excitations ha
been found in several periodic systems that exhibit stop g
in their linear excitation spectra, mainly in connection w
transmission through nonlinear periodic media in differe
areas of physics~see, e.g.,@7,8#!. Research on gap soliton
has gained new momentum since they have been ver
experimentally in a Bragg grating fiber@9#. The role of gap
solitons has also been discussed in transmission through
riodically corrugated silicon-on-insulator~SOI! waveguides
@10–12#. While in the earlier works an instantaneous thir
order nonlinearity of the Kerr type had been considered,
nonlinearity in the SOI Bragg gratings is of a diffusive typ
through coupling of the light to the density of free carrie
and to the electronic and lattice temperatures in the semi
ductor @13,14#. In the stationary case, this leads to an effe
tive nonlocal third-order nonlinearity, as will be shown b
low. Periodic systems with second-order nonlinearity ha
also been shown to give rise to gap solitary waves@15–23#.

*On leave from the Institut fu¨r Theoretische Physik, Universita¨t
Regensburg, D-93040 Regensburg, Germany.
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When the frequency of the second harmonic of the fun
mental mode with wave vector at the edges of the Brillou
zone is far from resonance with a waveguide mode, the s
evolution equations are obtained as had been derived for
case of Kerr nonlinearity, for which the Mills-Trullinger soli
tary solutions were found@2,6# ~we shall call them the MT
equations in the following! with an effective third-order non-
linearity. Inspired by earlier work on nonlinear waveguid
without periodic modulation@24#, the interesting situation o
a ~near! resonance of the second harmonic of the fundam
tal mode at Brillouin zone boundaries with another wav
guide mode has been studied@17–23#, and solitary wave
solutions have been found numerically and, for spec
choices of the parameters, analytically. For this system, m
tistability had been studied on the basis of the same ev
tion equations@25# as used for the determination of solita
waves.

While a variety of gap soliton solutions have been foun
little is known about their stability. Apart from very recen
work on solitary wave solutions of the MT equations@26#,
which makes use of the fact that these equations are i
grable in the limit of the massive Thirring model@27,28#,
information on the stability of gap solitary waves has mos
been drawn from numerical simulations. However, it is
gued in this paper that simulations do not always give
right answer concerning the stability of gap solitary wav
due to the special type of instability occurring in these s
tems and because of additional numerical instabilities ge
ated by discretization of the spatial coordinate which is
feature of all common numerical methods used in the in
4618 ©1999 The American Physical Society
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PRE 59 4619STABILITY OF STATIONARY GAP SOLITARY WAVES . . .
gration of nonlinear evolution equations in nonlinear opti
We therefore carry out a linear stability analysis and dia
nalize the resulting non-Hermitian linear operator by d
cretizing the spatial coordinate. In this way, we ident
physical and purely numerical instabilities.

The term gap solitary wave is used here for spatially
calized solutions of evolution equations with nonlinear
balancing the effect of linear coupling through the grati
between the forward and backward propagating gui
waves with wave vectors at the Brillouin zone bounda
Sometimes, the term gap soliton is also used for situati
where nonlinearity is a small perturbation compared to
effects of the periodicity of the grating. In this regime, so
tary waves are described by the nonlinear Schro¨dinger~NLS!
equation in the case of third-order nonlinearity and by
Karamzin-Sukhorukov~KS! equations in the case of secon
order nonlinearity with the second harmonic of the fund
mental waveguide mode in~quasi! resonance with anothe
waveguide mode. The stability properties of the solita
wave solutions of these evolution equations are well kno
@29,30#. These equations also follow from the evolutio
equations considered here in the limit of small intensiti
and one may therefore expect that the stability behavio
gap solitary waves approaches that of the soliton solution
the NLS and solitary wave solutions of the KS equations
these limits.

Throughout this paper, we have restricted our consid
ations to stationary gap solitary waves only.

In the following section, we briefly review the evolutio
equations that have been derived for the different types
nonlinearity and comment on some aspects that do not s
to have been appreciated in earlier works. We consider th
different systems which all find realizations in slab wav
guide geometries with periodically modulated surface or
terfaces:~1! guidedp-polarized plasmon polaritons on a su
strate with an instantaneous third-order~Kerr-type!
nonlinearity, ~2! guided s-polarized polaritons in a wave
guide which is nonlinear due to coupling of the electric fie
to a diffusive degree of freedom, and~3! guided polariton
modes interacting~quasi! resonantly with their second ha
monic through instantaneous second-order nonlinearity.

We emphasize that the evolution equations derived
these optical systems also partly apply to other physical c
texts like guided acoustic waves, for example.

Section III is devoted to the stability analysis for solita
waves found to exist in these three systems, and the p
ends with a short conclusion.

II. EVOLUTION EQUATIONS FOR GAP SOLITARY
WAVES

A. Kerr nonlinearity

In the pioneering work of Mills and Trullinger@2# and
most of the later studies on gap solitons, the Kerr type
nonlinearity had been considered. Instead of a superla
with periodically varying dielectric constant, we choose he
as an example system the one described in Ref.@32#, i.e., a
dielectric medium with Kerr-type nonlinearity covered by
metal film with periodically corrugated surface~Fig. 1!.
Later, we will generalize the system by allowing for the pre
ence of second-order nonlinearity in the substrate. The
.
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rugation is described by the surface profile functionz(x)
5z0 cos(Gx). The dielectric substrate fills the half spacez
,0 and the metal film occupies the region 0,z,d1z(x).
This system supportsp-polarized guided polaritons in th
linear limit also in the case of a flat metal surface. Usi
standard multiple-scale techniques~see, e.g., Ref.@33#!, the
MT equations are readily derived for this system. Writing t
electrical fieldEW in the form of an asymptotic expansion i
powers of a small parametern!1:

EW 5e2 iv0t@neiGx/2EW ~1 !~z!B1~X,T!1ne2 iGx/2

3EW ~2 !~z!B2~X,T!1n3EW ~3!1O~n5!#1c.c. ~2.1!

with amplitudes B6 depending on stretched coordinat
X5n2x and T5n2t, and scaling z(x)5n2z̃(x)
5n2z̃0 cos(Gx), one is led to

A21 i S ]A1

]t
1

]A1

]j D1@N1uA1u21N2uA2u2#A150,

~2.2a!

A11 i S ]A2

]t
2

]A2

]j D1@N1uA2u21N2uA1u2#A250

~2.2b!

after rescaling of the spatial and temporal coordina
@X→j, T→t, A6(j,t)5B6(X,T)#. The fields
exp@i(6Gx/22v0t)#EW (6)(z) are surface polariton solution
of the linearized wave equation and corresponding bound
conditions for our system with planar interfaces, i.e., in t
absence of nonlinearity and periodic corrugation. Details
the derivation are given in Ref.@34#, where widths and peak
intensities of solitary waves with frequency in the center
the gap in the linear dispersion relation have been evalua
The results are shown in Table I, the intensityI being defined
here asI (X,z)52uB6(X)EW 6(z)u2. For the dielectric con-
stant of the metal film, the simple form«(v)512vp

2/v2

has been used with the plasma frequenciesvp of silver ~3.78
eV!, aluminum~14.97 eV!, and zinc~17.8 eV! @35#. As Kerr
coefficients, the data of Ref.@36# have been used for th
substrate materials GaAs and InSb. Since the III-V semic
ductors allow for second-order nonlinearity in addition
third-order nonlinearity, these data can only be taken as

FIG. 1. Geometry of the system considered as an example f
Bragg grating considered in Sec. II A.d, average film thickness;a
52p/G, periodicity of the surface corrugation.
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TABLE I. Spatial extension@full width at half maximum~FWHM!# and maximum intensityI ~as defined
in the text! of gap solitons for various sets of system parameters. The linear gap widthDV is also given.
a52p/G is the periodicity of the grating,z0 is its amplitude, andd is the film thickness.

a (100 nm) d (100 nm) z0 (100 nm) I max @(V/m)2# FWHM ~cm! DV (rad/s)

InSb/Ag 6.0 2.0 0.4 1.813106 0.6 3.031010

6.0 2.0 0.2 9.063105 1.2 1.531010

6.0 2.0 0.1 4.533105 2.39 7.43109

5.5 0.3 0.1 1.313109 7.631024 1.931013

InSb/Al 6.2 0.35 0.1 1.453106 0.76 2.631010

6.2 0.7 0.1 6.953103 159.0 1.23108

InSb/Zn 6.2 0.3 0.1 1.103106 1.0 2.031010

6.2 0.6 0.1 4.793103 231.0 8.53107

GaAs/Al 1.06 0.65 0.1 2.23109 0.7 2.531010

1.06 0.35 0.1 2.931011 0.0054 3.331012

GaAs/Zn 1.08 1.0 0.1 4.23105 3760 5.03106

1.08 0.55 0.1 2.13109 0.76 2.531010

1.08 0.3 0.1 2.431011 0.0067 2.831012
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fective Kerr coefficients which are, in principle, geomet
dependent. This aspect will be discussed in detail in S
II C. For the cases listed in Table I, the maximum ofI as a
function of the depth coordinatez is reached on the substra
side of the substrate-film interface.

In the limit of small nonlinearity compared to the line
coupling, Eq.~2.2! is easily reduced to a system of two no
linearly coupled nonlinear Schro¨dinger equations,

i
]b6

]t
7

1

2

]2b6

]j2
1@~N11N2!ub6u212N1ub7u2#b650.

~2.3!

Introducing another expansion parameterñ and scaling the
linear interaction asñ21, one finds Eq.~2.3! with

S A1~j,t!

A2~j,t!
D'e2 i t/ ñS 1

1D b1~j,t!1ei t/ ñS 1

21D b2~j,t!.

~2.4!

It should be noted that when deriving the NLS equatio
~2.3! from the MT equations~2.2!, it is assumed that the
dispersion of the linear modes at the Brillouin zone bound
is due to the fundamental Fourier component of the gra
with wave numberG only. If one relaxes this condition, on
can still derive the NLS equations~2.3!, but the coefficient in
front of the second spatial derivative may be influenced
physical dispersion, waveguide dispersion in the absenc
the grating, and by higher Fourier components of the g
ing’s profile function in the case of a deep grating.

B. s-polarized gap solitary waves in waveguides with
diffusive nonlinearity

Recently, transmission ofs-polarized light has been stud
ied in nonlinear silicon-on-insulator waveguides with pe
odically corrugated surfaces. The geometry is similar to t
of Fig. 1 with the metal film now replaced by a silicon film
and the dielectric substrate replaced by a thick SiO2 layer on
a silicon substrate. In these systems, the optical nonlinea
results from free carriers generated by the light intens
c.

s

y
g

y
of
t-

t

ity
.

These charge carriers influence the refractive index of
waveguide directly or indirectly via the thermo-optic effe
by locally heating the lattice. These effects can be descri
approximately by three coupled diffusion equations for t
carrier concentration, the carrier temperature, and the la
temperature@13,14#, which are in turn coupled to Maxwell’s
equations.

An important feature of these equations is the presenc
diffusion terms which may have a strong influence on
spatial distribution of the intensity in a gap soliton solutio
To keep the following calculations as simple as possi
while still capturing this important feature, we consider t
following model, in which one diffusion equation is couple
to the electromagnetic field in the film:

]n

]t
1

n

t r
2DDn5auEW u2, ~2.5!

]2

]t2

«

c2EW 1¹W 3~¹W 3EW !52
]2

]t2 KcnEW , ~2.6!

where D is the Laplace operator. To keep the notati
simple, the dispersion of the dielectric constant has not b
indicated explicitly in Eq.~2.6!, but will be accounted for in
the following. However, we shall neglect all losses to t
electromagnetic field for simplicity. The quantityn repre-
sents either the carrier concentration, or the lattice or car
temperature. A generalization to three coupled equation
the type of Eq.~2.5! is straightforward. In addition to the
electromagnetic boundary conditions, we require that
component of the gradient ofn normal to the boundaries o
the silicon film has to vanish at these boundaries.

To the coupled system of partial differential equatio
~2.5! and ~2.6! we may again apply an asymptotic analys
expanding the electric field as Eq.~2.1! and scalingn
5O(n2). Following the asymptotic scheme, we have
solve an inhomogeneous partial differential equation
n(x,z) to second order in the expansion parametern and
insert its solution into Eq.~2.6!. The compatibility conditions
for the solvability forEW (3) then yield the evolution equation
~2.2! with coefficientsN1 andN2 depending onv0 , G, the
relaxation timet r , and the diffusion constantD.
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For large diffusion constants, the coefficientsN1 andN2
become equal. While in the above treatment, the variati
of the quantityn on long time and long length scalesT andX
follow those of the intensity of the light, this is not necess
ily the case for large diffusivity. In order to account for th
effect, we introduce a different scaling of the parameters
Eq. ~2.5! by writing it in the form

n22t r

]n

]t
1n2n24Dt rDn5t rauEW u2. ~2.7!

Expandingn5n2n(2)1n3n(3)1O(n4) and inserting this to-
gether with Eq.~2.1! into Eq. ~2.7!, one finds thatn(2) is
independent of the short scalest, x, and

r1tR

]

]t
r2k2

]2

]j2 r5@ uA1u21uA2u2#, ~2.8!

where t}T,j}X,r(j,t)}n(2)(X,T), and A6(j,t)
}B6(X,T). This equation is coupled to the two equatio
for the field amplitudes,

A71 i S ]A6

]t
6

]A6

]j D1SrA650, ~2.9!

where S561. In the following, we consider the positiv
sign only. Equation~2.9! is obtained by inserting Eq.~2.1!
and the expansion forn into Eq.~2.6! and applying the usua
multiple-scale procedure withT5n2t andX5n2x. The res-
caling leading fromT,X,n(2),B6 to t,j,r,A6 has been
made to eliminate constant coefficients from the evolut
equations. The remaining parameters are the effective d
sion lengthk and relaxation timetR . In the limit tR50, the
variabler is readily eliminated to yield two coupled evolu
tion equations of the form~2.2! with, however, a nonloca
nonlinearity,

A7~j,t!1 i S ]

]t
6

]

]j DA6~j,t!

1
S

2kE2`

`

e2uj2j8u/k@ uA1~j8,t!u2

1uA2~j8,t!u2#dj8A6~j,t!50. ~2.10!

In order to find stationary solutions to Eqs.~2.8! and~2.9!
that correspond to the gap solitary waves found by Mills a
Trullinger in the limit k50, we start with the ansatz

A1~j,t!5U~j!e2 idt, A2~j,t!5U* ~j!e2 idt

~2.11!

and requirer to be independent oft. Furthermore, we im-
pose the condition that the real part ofU is an odd function
while its imaginary part is an even function ofj. The diffu-
sion lengthk sets here an additional scale for the width
spatially localized solutions. The conservation law

U21~U* !212~r1d!uUu21
k2

2 S ]r

]XD 2

2
1

2
r250

~2.12!
s

-

n

n
u-

d

f

establishes a relation between the values ofr and the imagi-
nary part ofU at j50.

Figure 2 shows the maximum values of the intens
uA6u2 and the variabler as a function of the square of th
diffusion lengthk. As may have been expected, the width
the stationary solitary wave solutions increases with incre
ing diffusion length. As may be seen from Fig. 3, this
much more the case for the quantityr than for the intensity
uA6u2 of the electromagnetic field.

We note that in Eqs.~2.8! and ~2.9!, the charge
*@ uA1(j,t)u21uA2(j,t)u2#dj is a conserved quantity
while energy and momentum conservation only hold in
limit tR50.

In addition to the stationary solutions found by Mills an
Trullinger, moving solitary solutions have also been fou
@6# for the two coupled equations~2.2!. Analogous solutions
of Eqs. ~2.8! and ~2.9! would be attenuated due to the tim
derivative occurring in Eq.~2.8!, which is not effective in the
stationary case.

C. Quadratic nonlinearity in the nonresonant case

In the presence of second-order nonlinearity, the elec
magnetic wave with frequencyv0 generates a second ha
monic. We first consider a situation in which this seco
harmonic is not resonant with a waveguide mode, wh

FIG. 2. Maximum values of the field intensity@ uA6(0)u2,
dashed curve# and of the carrier concentration@r(0), solid curve#
as a function of the diffusion lengthk ~arbitrary units! for gap
solitary wave solutions of Eqs.~2.8! and~2.9! with frequency in the
center of the gap (d50).

FIG. 3. Full width at half maximum of the field intensit
(uA6u2, dashed curve! and of the carrier concentration (r, solid
curve!, associated with a gap solitary wave solution withd50, as a
function of the diffusion lengthk ~arbitrary units!.
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situation has also been treated in Ref.@15#. As an example,
we choose again the waveguide system of Fig. 1. We ass
that there is no waveguide mode with wave vector6G and
frequency equal or close to 2v0 in the absence of nonlinear
ity and periodic modulation.

In this case, which is illustrated schematically in the l
part of Fig. 4, the second harmonic can be included in
asymptotic expansion~2.1! by adding to the right-hand sid
of Eq. ~2.1! the term

e22iv0t@n2eiGxEW ~12,2!~z!B1
2 ~X,T!

1n2e2 iGxEW ~22,2!~z!B2
2 ~X,T!

1n2EW ~0,2!~z!B1~X,T!B2~X,T!1O~n3!#1c.c. ~2.13!

The functionsEW (62,2) and EW (0,2) are solutions of the field
equations to second order in the expansion parametern and
the corresponding boundary conditions at the planar in
faces and at infinity. These field equations have the form

H «L~2v0!S 2v0

c D 2

1~12daz!
]2

]z2J Ea
~0,2!

52S 2v0

c D 2

2(
b,g

xabg
~2! Eb

~1 !Eg
~2 ! ~2.14!

(
b

H «L~2v0!S 2v0

c D 2

dab

1(
g

¹W g
~6 !¹W g

~6 !dab2¹W a
~6 !¹W b

~6 !J Eb
~62,2!

52S 2v0

c D 2

(
b,g

xabg
~2! Eb

~6 !Eg
~6 ! . ~2.15!

Here,«L(v) is the linear dielectric function which depend
on frequency and on the spatial coordinatez, thexabg

(2) are the
coefficients occurring in the second-order term in the exp
sion of the polarization with respect to the electric field, a
a,b,g are Cartesian indices. In addition, we have defin
¹W x

(6)56 iG, ¹W y
(6)50, and¹W z

(6)5]/]z. The inhomogeneous
equations~2.14! and ~2.15! can be solved in a straightfor
ward way. The boundary conditions at the interfaces an
z56` guarantee the uniqueness of their solutions. In

FIG. 4. Nonresonant~left! and resonant~right! interaction of
carrier wave components with their second harmonic, schem
cally. The thick lines represent parts of the dispersion curves
linear guided modes.
e

t
e

r-

-
d
d

at
e

next step, the solutions of Eqs.~2.14! and~2.15! are inserted
into the field equations of orderO(n3) in the asymptotic
procedure, which are projected on the modal fieldsEW (6)(z)
to obtain again the evolution equations~2.2!. However, the
coefficientsN1 andN2 can be modified due to the feedbac
of the second harmonic on the fundamental wave. Depend
on the symmetry of the tensor (xabg

(2) ), both coefficients or
only one of them may be affected. If, for example, the co
pling constantsxabg

(2) are nonzero only if the Cartesian ind
cesa, b, andg are pairwise distinct, the right-hand side
Eq. ~2.14! vanishes while the right-hand side of Eq.~2.15!
does not. Consequently,N2 remains unchanged, whileN1
may be modified by the quadratic nonlinearity. IfN2 is
modified, it will necessarily acquire an imaginary part in o
waveguide system. This is due to the fact that two coun
propagating guided waves generate bulk waves that rad
energy into the substrate and into the vacuum. In orde
satisfy the boundary conditions at the surface and at the
terface, the solution of Eq.~2.14! contains a component o
the formEW(S)exp(iqSz) in the substrate andEW(V)exp(2iqVz) in
the vacuum region, whereqS52v0A«L/c and qV52v0 /c.
~In the substrate far from the surface,«L is assumed to be
independent ofz.! Such a plane-wave component is n
present in the solution of Eq.~2.15! unless one is in a regime
where Cherenkov radiation of the second harmonic ta
place. Therefore, the coefficientN1 is normally real. The
imaginary part ofN2 can be associated with the energy flu
into the substrate and vacuum in the following way: W
multiply Eq. ~2.14! by Ea

(0,2)* , sum overa, and integrate
overz from 2H to 1H, where 1/H is much smaller than the
decay constants of the guided wave fieldsEW (6) in the
vacuum and the substrate. Integrating once by parts and
tracting the conjugate complex yields the following equatio

28
v0

2

c2 E
2H

H

(
a,b,g

xabg
~2! Ea

~0,2!* ~z!Eb
~1 !~z!Eg

~2 !~z!dz2c.c.

5(
a

FEa
~0,2!* ~z!

]

]z
Ea

~0,2!~z!G
2H

H

2c.c. ~2.16!

For H sufficiently large, the integral on the left-hand sid
becomes independent ofH, and we may extend the integra
to 6` to obtain finally

4i
v0

2

c2 E
2`

`

(
a,b,g

xabg
~2! Ea

~0,2!* ~z!Eb
~1 !~z!Eg

~2 !~z!dz1c.c.

52uEW~V!u2qV2uEW~S!u2qS . ~2.17!

The left-hand side of Eq.~2.17! is the imaginary part of the
correction to the coefficientN2 in the evolution equations
due to quadratic nonlinearity. The right-hand side is ob
ously the energy current into the substrate and the vacu
generated by the counterpropagating guided modesEW (6). In
an analogous way, it is shown thatN1 is real. The imaginary
part of the coefficientN2 gives rise to damping of nonlinea
modes which depends on their amplitudes.

The two substrate materials considered in the example
Table I, GaAs and InSb, have been treated as Kerr mater
although they also have a nonvanishingx (2). We repeat that

ti-
f
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the experimental values of Ref.@36# for the intensity-
dependent refractive index used for the data presente
Table I have to be regarded as effective Kerr coefficie
which, in principle, depend on the geometry of the wav
guide.

D. Resonant interaction with the second harmonic

By choosing the materials and the geometry appro
ately, the dispersion curves of the guided modes in mu
mode systems like our example system of Fig. 1 can
arranged such that the second harmonic of a guided m
with frequencyv0 and wave vectorK is resonant~or almost
resonant! with another guided mode, i.e., there is a guid
mode having wave vectorK̃52K and frequencyṽ'2v0 . If
now a periodic grating is ruled on the surface with period
ity a52p/G and K5G/2, then a gap will open up at th
frequencyv0 in the usual way, due to the linear interactio
of the mode having wave vectorK5G/2 with the counter-
propagating mode having wave vector2G/2 via the grating.
Similarly, a frequency splitting can occur due to linear inte
action between the modes with wave vectorG and2G ~see
right part of Fig. 4!. If, in addition, second-order nonlinearit
is present and symmetry allows for it, the mode with wa
vectorK interacts with the mode having wave vector 2K and
in the same way, the mode with wave vector2K interacts
with the mode having wave vector22K. This ~quasi! reso-
nant interaction has to be accounted for in our asympt
procedure by including the terms

e2ṽt@neiGxEW ~21 !~z!B̃1~X,T!

1ne2 iGxEW ~22 !~z!B̃2~X,T!#1O~n2! ~2.18!

in the expansion~2.1!. EW (26)(z) are the modal fields of the
waveguide modes with wave vectors6G and frequencyṽ.
Furthermore, we use the scalingX5nx and T5nt for the
stretched coordinates andz(x)5nz̃(x) for the surface profile
function to ensure that the dominant effects of quadratic n
linearity and periodic corrugation are of the same order
magnitude. Going now through the usual multiple-scale p
cedure, one obtains after rescaling and simple transfor
tions of the phases

u21 i S ]u1

]t
1

]u1

]j D12w1u1* 50, ~2.19a!

u11 i S ]u2

]t
2

]u2

]j D12w2u2* 50, ~2.19b!

Lw212ikS ]w1

]t
1v

]w1

]j D1u1
2 2mw150,

~2.19c!

L* w112ikS ]w2

]t
2v

]w2

]j D1u2
2 2mw250.

~2.19d!

The functionsu6(j,t) are related toB6(X,T) andw6(j,t)
to B̃6(X,T). The parametersk, m, andv are real, whileL is
usually complex. In particular,v stands for the ratio of the
in
ts
-

i-
i-
e
de

-

-

e

ic

n-
f
-
a-

group velocities of the linear waveguide modes with wa
vectorG andG/2 in the absence of periodic modulation.

Solitary wave solutions of these equations have b
found by several authors@17–23# numerically and, in certain
special cases, analytically. In addition to stationary solutio
even moving solitary waves have been determined@22#. The
stationary ones, to which we confine our attention here,
be obtained by a reduction of Eq.~2.19! to ordinary differ-
ential equations~ODEs! via

u6~j,t!5U6~j!eidt, ~2.20a!

w6~j,t!5W6~j!e2idt, ~2.20b!

and the requirementU15U2* 5U and W15W2* 5W. The
resulting ODEs have the conserved quantity

U21~U* !21L* W21L~W* !222duUu222m̄uWu2

12W* U212W~U* !2, ~2.21!

wherem̄5m14kd. An example of such a stationary solitar
wave is shown in Fig. 8~c!. We note that in the limitv50,
the ODEs resulting from the reduction~2.20! can be trans-
formed into Eqs.~11! in Ref. @37#. For these equations, ana
lytic solutions and a detailed discussion are given there.

In the same way as the MT equations can be appro
mately transformed into a pair of NLS equations in the lim
of weak intensities, the evolution equations~2.19! reduce to
the KS equations in this limit, when the frequencies of t
fundamental and the second harmonic are close to the e
of the linear gaps@18#. For example, whenL is real and the
modulus ofD5(m2L)/(2k)12 is much smaller than 1
one obtains@17#

i
]

]t
A2

1

2

]2

]j2 A12BA* 50, ~2.22a!

2ik
]

]t
B2

2k2v2

L

]2

]j2 B22kDB1A250 ~2.22b!

for the variables A5(1/2)(u11u2)exp(2it) and B
5(1/2)(w11w2)exp(22it).

III. STABILITY ANALYSIS

To investigate the stability of the solitary wave solutio
found by solving the ordinary differential equations resulti
from Eq.~2.19! via the reduction~2.20!, we have carried out
long-time numerical simulations by integrating the coupl
evolution equations~2.19! using a split-step Fourier schem
with initial conditions corresponding to a stationary solutio
The results of these simulations were not conclusive. E
when a stationary solution appeared to be quite rob
against perturbations of its initial conditions on a short-tim
scale, it showed a sudden breakup on a long scale@.25 time
units for the solution shown in Fig. 8~c!# with strong spatial
fluctuations. Similar phenomena, albeit on an even long
time scale, were observed for certain solutions of the M
equations. It was impossible to decide from the results of
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simulations whether these breakups are the result of the
merical scheme used for the integration of the partial diff
ential equations, or whether it is the consequence of a ph
cal instability. In order to clarify this question, we hav
carried out a linear stability analysis for stationary localiz
solutions of the four coupled equations~2.19! as well as of
the MT equations. We describe this analysis in some de
for the case of Eqs.~2.19!. The procedure is analogous fo
the MT equations. We write

u6~j,t!5@U6~j!1a6~j,t!#eidt, ~3.1a!

w6~j,t!5@W6~j!1b6~j,t!#e2idt, ~3.1b!

and decomposea6 and b6 into their real and imaginary
parts, denoted by a prime and a double prime, respectiv
We then linearize Eq.~2.19! with respect to the eight vari
ables a68 , a69 , b68 , b69 . Defining the eight-
component vector

p5~a18 ,a28 ,b18 ,b28 ,a19 ,a29 ,b19 ,b29 ! ~3.2!

one is led to the following system of linear equations:

J
]

]t
p5Mp . ~3.3!

Here

J5S 0 K

2K 0 D ~3.4!

and K is a diagonal 434 matrix with K115K2251 and
K335K4452k. The matrix operatorM has the form

M5S H1 A

A1 H2
D , ~3.5!

whereH1 and H2 are two Hermitian operators andA is a
matrix non-Hermitian matrix operator. Explicitly,

H15S 2d12W8 1 2U8 0

1 2d12W8 0 2U8

2U8 0 2m̄ L8

0 2U8 L8 2m̄

D , ~3.6!
u-
-
si-

il

ly.

A5S 2
]

]j
12W9 0 2U9 0

0
]

]j
22W9 0 22U9

22U9 0 22kv
]

]j
2L9

0 2U9 L9 2kv
]

]j

D .

~3.7!

Here, a prime and a double prime denote again the real
imaginary part, respectively. The matrixH2 is obtained from
H1 by changing the sign in front ofW8.

With the ansatzp(j,t)5q(j)exp(lt), Eq. ~3.3! becomes
a non-Hermitian eigenvalue problemlq5Lq , where L
5J21M . The components of the vectorp will from now on
be regarded as complex quantities. SinceJ andM are purely
real, real solutions of Eq.~3.3! are obtained from a comple
one by forming linear combinations ofp andp* . The struc-
ture of Eq. ~3.3! is distinct from the linearizations of the
nonlinear Schro¨dinger equation and the Karamzin
Sukhorukov equations because of the presence of the
Hermitian operatorA. There is no reason to assume that t
squares of the eigenvaluesl are real for the MT equations
and the evolution equations~2.19!. Therefore, the method o
Pelinovsky, Buryak, and Kivshar@30# ~see also@31#! for the
determination of the boundary between stable and unst
regions in parameter space cannot be applied here. W
this method, the stability boundary is determined from
compatibility condition arising in an expansion in powers
the eigenvaluel near the stability boundary. In the system
considered here, the eigenvalue associated with an instab
may have a large~and unknown! imaginary part near the
stability boundary.

In order to determine the spectrum of the non-Hermit
operatorL , we discretize the spatial coordinatej, i.e., we
work with grid pointsjn5nDj, wheren50,61,62, . . . ,
1N. ~In the actual calculations, the grid was shifted byDj/2
for numerical convenience.!

All common numerical schemes employed for the integ
tion of nonlinear evolution equations of the type conside
here are based on a discretization of the spatial coordin
However, there are various ways in which they deal w
spatial derivatives of a functionf (j). The simplest is to re-
place ] f (j)/]j at grid point j5nDj by $ f (@n11#Dj)
2 f (@n21#Dj)%/(2Dj). We call this the derivative of
type I.

Semispectral methods usually work with a regular gr
too. Their treatment of the spatial derivative corresponds
replacing ] f (j)/]j at grid point j5nDj by
2 i (m52N

N21 Dnmf (mDj) with
Dmn5
2p

NDj H 1 for m5n

~21!m2nF12 i
sin@p~m2n!/N#

12cos@p~m2n!/N#G for mÞn
~3.8!
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forming a self-adjoint matrix. This way of discretizing th
spatial derivative will be called the derivative of type II.

In the semispectral methods and hence in the treatme
the derivative of type II, periodic boundary conditions a
implied, f (NDj)5 f (2NDj). For the derivative of type I,
various boundary conditions~including periodic! can be
specified. When the solitary wave solution is centered aj
50 andNDj is much larger than the spatial extent of t
solitary wave, one would expect that the qualitative featu
of the spectrum of the discretized operatorL are independen
of the boundary conditions. This turns out to be the case
the NLS and KS equations, but not for the MT equations a
Eqs.~2.19!.

One consequence of discretization is the introduction
an upper bound to the continuous and purely imaginary
of the spectrum ofL associated with scattering states. T
corresponding eigenvectors are a superposition of p
waves at large distances from the solitary wave solution
addition, the restriction to a finite domain~finite N) dis-
cretizes this part of the spectrum. We emphasize that w
using the term finite spatial domain, we always mean that
boundaries of this domain are far remote from the cente
the solitary wave solution such that the solitary wave fi
has fallen off to virtually zero at these boundaries.

We have determined the spectrum of the operatorL after
discretization for various examples and have investigated
dependence on the two parametersN andDj. A typical ex-
ample for the KS equations and a solitary wave solution
the unstable region of the parameter space is shown in Fi
In addition to the purely imaginary part of the spectru
there are two real eigenvaluesl56ulu. Their modulus is in
perfect agreement with the growth rate given in Fig. 2
Ref. @30# for this case.

Figure 6 shows the spectrum for a gap solitary wave
lution of the MT equations. The symmetry of the MT equ
tions implies that ifl5l81 il9 is an eigenvalue, so ar
l82 il9 and2l86 il9. In addition to the purely imaginary
part of the spectrum, a large number of complex eigenva
appears, having small real parts but large imaginary pa
With increasing refinement of the discretization and incre
ing rangeNDj, some of these eigenvalues move towards
imaginary axis. Most of the eigenvalues with nonzero r
part are associated with eigenvectors that show rapid o
lations and normally change sign between two adjacent
points@Fig. 7~a!#. They are sensitive to the parameterDj as

FIG. 5. Eigenvalues of the operatorL for a solitary wave solu-
tion of the KS equations witha50.05 ands52 ~parameters de-
fined in @30#!.
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well as to the way the spatial derivative is treated, and th
are obviously a consequence of the discretization and co
spond to numerical instabilities. They occur even in the
tegrable caseN150, which corresponds to the massiv
Thirring model. This means that numerical integrati
schemes can face instabilities in long-time simulations
solitary pulse propagation with the evolution equations~2.2!
and ~2.19! in contrast to the NLS and KS equations. Th
may perhaps be avoided by introducing spatial smoothing
a short length scale.

Other eigenvalues with nonzero real part have eigenv
tors that are largely localized at the edge of the spatial
main, i.e., they are appreciably different from zero only
j'6NDj. They are a consequence of the finite range
which we have limited our analysis up to now.

In addition to the eigenvalues with nonzero real part t
are associated with purely numerical instabilities, there
be a few that have a physical interpretation. Their associa
eigenvectors vary slowly on the scaleDj @Fig. 7~b!# and
hence become independent of the discretization for su
ciently smallDj. However, for distancesj far away from
the solitary wave solution, they do not fall off to zero as
the case of the KS equations, but they are of oscillat
character. In fact, they are a superposition of generali
plane waves with complex wave numbersk that follow from
the secular equation

uL̃ ~k!2l1u50, ~3.9!

where1 is a unit matrix andL̃ (k) is the matrix obtained from
the operatorL by settingU85U95W85W950 and replac-

FIG. 6. Eigenvalues of the operatorL for a solitary wave solu-
tion of the MT equations~2.2! with parametersN153, N2

51, d520.1, Dj50.08, N5100. ~a! Derivative of type I;
~b! derivative of type II. Eigenvector components associated w
eigenvalues represented by a star are shown in Fig. 7.
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ing the derivative]/]j by ik. @In the case of the KS and MT
equations, these are 434 matrices while in the case of Eq
~2.19!, they are 838 matrices.# As the eigenvaluel has a
small real part, the wave numbersk have to be expected t
have small positive as well as negative imaginary parts.
physical interpretation of these eigenmodes is the followi
The solitary wave is unstable and emits radiation with f
quencyl9 and ~real! wave numbersk8 obtained from the
solutions of Eq.~3.9!. In a finite spatial domain, this radia
tion gets reflected from the boundaries, and the reflec
wave components interfere with the wave field in the nei
borhood of the solitary wave solution. Similarly, in the ca
of periodic boundary conditions, the radiation leaving t
periodicity domain on one side and reentering it on the ot
interferes with the wave field at the position of the solita

FIG. 7. Eigenvectors associated with certain eigenvalues sh
in Fig. 6. ~a! Real part of the componentsa18 of the eigenvectorq
corresponding to the star in Fig. 6~a!. ~b! Real part~solid! and
imaginary part~dashed! of a18 associated with the lower star in Fig
6~b! @same as star in Fig. 6~a!#. ~c! Corresponding solitary wave
solution having the form~2.11!. Real part~solid! and imaginary part
~dashed! of U are shown for comparison.
e
:
-

d
-

r

pulse. Therefore, the eigenvaluel strongly depends on the
boundary conditions and on the size of the spatial dom
Solitary waves that are linearly stable for a certain dom
size may be unstable for another. This effect has also b
observed in discrete systems@38,39#. It has to be kept in
mind when interpreting the results of numerical simulatio
that necessarily have to be carried out on a finite domain.
parametersN2 /N152 andDv50, an instability of the gap
soliton solution of the MT equations has been found on
finite spatial domain, while this solution is predicted to
stable on an infinite domain@26#.

The spectrum of the operatorL for solitary wave solu-
tions of Eqs.~2.19! and the corresponding eigenvectors ha
structure similar to the ones discussed for the MT equatio
At large distances from the solitary wave solution, the co
ponentsa6 associated with the fundamental frequency d
couple from the componentsb6 corresponding to the secon
harmonic, and the secular equation~3.9! factors. Conse-
quently, either the componentsa6 or b6 are of nearly plane-
wave character at large distances, while the other ones
localized at the solitary wave solution.

Growth rates for an infinite spatial domain may be co
puted generalizing a simple method that had been develo
earlier for a discrete system@38#. It is based on an
eigenvalue-dependent boundary condition that simulates
infinite spatial domain. We describe this approach here
Eqs. ~2.19!. At large distances from the solitary wave, th
eigenvectorq associated with a complex eigenvaluel has
the form

q~j!5(
j 51

4

cje
ik j ~l!jwj~l!, ~3.10!

where kj , j 51, . . . ,4, are thesolutions of the secula
equation~3.9! that correspond to exponentially decreasi
partial waves in the direction away from the solitary wav
andwj is the nontrivial solution of the singular linear prob
lem

@ L̃ ~kj !2l1#wj50, ~3.11!

normalized in an appropriate way. The coefficientscj , j
51, . . . ,4, arestill unknown. When discretizing the spatia
coordinatej, we use version I of the discretized derivativ
replace the derivative]q(j)/]j at j5NDj by

1

2DjH (j 51

4

c̃ je
ik j ~l!Djwj~l!2q~@N21#Dj!J , ~3.12!

and express the coefficientsc̃ j , j 51, . . . ,4, in terms of
the components of the vectorq(NDj) through the relation

q~NDj!5(
j 51

4

c̃ jwj~l!. ~3.13!

The four coefficientsc̃ j are actually overdetermined by th
eight linear equations~3.13!. In practice, we include in the
sum on the right-hand side of Eq.~3.13! the four exponen-
tially increasing partial waves (j 55, . . . ,8), invert the 8
38 matrix with column vectorswj , j 51, . . . ,8, anddis-

n
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card the coefficientsc̃ j with indicesj 55, . . . ,8. Inthis way,
we have eliminatedq(@N11#Dj) in favor of q(NDj). We
proceed in the same way with the derivative atj52NDj
and are left with an eigenvalue problem of a non-Hermit
@8(2N11)#3@8(2N11)# matrix, which depends, howeve
on the eigenvaluel via the wave numberskj and the vectors
wj . Starting with an initial guess forl and its associated
eigenvector, one may use the inverse iteration scheme
scribed in Ref.@40# with the modification that in each itera
tion step, thel-dependent parts of the matrix have to
updated@38#. It has to be noted that the convergence of t
procedure depends on the initial guess for the eigenvalue
eigenvector and cannot always be achieved.

Figure 8 shows the resulting eigenvector for the eig

FIG. 8. Eigenvector corresponding to the eigenvaluel50.048
1 i0.755 for a solitary wave solution of Eqs.~2.19! having the form
~2.20!. Parameters:d50.8, v50, k50.5, m54, L51 ~in-
finite spatial domain!. ~a! Real part ~solid! and imaginary part
~dashed! of a29 . ~b! Real part~solid! and imaginary part~dashed! of
b29 . ~c! Corresponding solitary wave solution. Solid, real part ofU;
dotted, imaginary part ofU; dashed, real part ofW; dashed-dotted,
imaginary part ofW.
n

e-

s
nd

-

valuel'0.0481 i0.755 corresponding to an instability of
solitary wave solution with profile also displayed in Fig.
While the componentsb6 associated with the second ha
monic are localized in the region of the solitary wave, t
componentsa6 are spatially extended and decay slowly wi
increasing distance from the solitary wave. Making use
the smallness of the growth ratel8 in comparison toul9u,
we may expand

kj~l81 il9!52k j~l9!1 il8sj~l9!1O„~l8!2
…

~3.14!

with real wave numbersk j and real inverse group velocitie
sj . The perturbationp(j,t) at large distances from the sol
tary wave may then be written in the following approxima
form:

p~j,t!'(
j

cje
l8~t2sjj!e2 i ~k jj2l9t!wj , ~3.15!

which supports the interpretation of the solitary wave rad
ing plane waves having envelopes that move with the gr
velocitiessj

21 .
In Fig. 9, the dependence of two eigenvaluesl on the

frequency of the gap solitary wave solutions is shown. T
parameters in Eqs.~2.19! have been chosen to be the same
for the solution shown in Fig. 8~c!. By lettingd vary between
1 and21, we sweep the frequency of the fundamental co
ponent of the solitary wave through the gap. With decreas

FIG. 9. Dependence on frequency of two eigenvalues of
operatorL for stationary solitary wave solutions of Eqs.~2.19! in an
infinite spatial domain. Parameters:v50, k50.5, m54, L
51. Gray: radiative regime.
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d, the growth ratesl8 diminish. Shortly after a curvel9
versusd enters the white triangle from the right in Fig. 9~b!,
the corresponding growth ratel8 becomes zero. Within this
white triangle, the frequencyd6l9 of the perturbation
a6(j,t)eidt of the solitary wave’s fundamental compone
is in the gap of the fundamental mode and consequen
q(j) decays exponentially away from the solitary wave s
lution even if l850. On the left side of the value ofd at
which l8 has become zero,l9 is the relative frequency of an
internal mode of the solitary wave solution. This scenario
very similar to the one found by Barashenkovet al. for the
MT equations@26#. The twol9 versusd curves of Fig. 9~b!
terminate at the left boundary between the white triangle
the radiative regime. Beyond this boundary, there may
resonances in the continuous spectrum of the operatoL
which would form a continuation of these two discre
branches of eigenvalues. Ford,0, no instabilities have bee
found of the solitary wave solution of Eq.~2.19! with param-
etersv50, k50.5, m54, L51. Although our search
procedure does not guarantee finding all possible insta
ties, there is a high probability that the center of the gapd
50) is a boundary of stability for this set of parameters.

In the same way, this type of instability on an infini
spatial domain has been investigated for the MT equati
~2.2!. Its occurrence forN1Þ0 and sufficiently negative val
ues ofd have been predicted by Barashenkovet al. @26#. For
example, in the caseN15N251 andd520.1, an unstable
mode exists with eigenvaluel'0.0131 i1.0. The MT equa-
tions ~2.2! with N15N2 are obtained from the evolutio
equations~2.10! in the limit of vanishing diffusion lengthk.
The growth ratel8 has been found to decrease rapidly w
increasingk reaching zero atk'0.4 ~Fig. 10!. This suggests
that a finite diffusion lengthk seems to have a stabilizin
effect on the gap solitary solutions.

In a very recent work@41#, Champneyset al.searched for
solitary wave solutions of Eqs.~2.2! with additional disper-

FIG. 10. Dependence of the eigenvaluel on the diffusion
lengthk for stationary solitary wave solutions~2.11! of Eq. ~2.10!
with d520.1; solid, real part; dotted, imaginary part.
y,
-

s
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e
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sion termsD]2A1 /]j2 in Eq. ~2.2a! andD]2A2 /]j2 in Eq.
~2.2b!. They call the solitary wave solutions of the MT equ
tions ~2.2! ‘‘structurally unstable,’’ because they found th
no branch of solitary wave solutions of the extended evo
tion equations approaches the MT solutions in the limitD
→0. However, it has to be noted that addition of the abo
dispersion terms removes the gap in the linear dispers
relation. Consequently, solitary wave solutions of these
tended equations have an exceptional character compa
to intrinsic localized in-band modes in discrete lattices a
generalized nonlinear Schro¨dinger equations@42,43#.

IV. CONCLUSIONS

In summary, stationary gap solitary waves have been
cussed as solutions of evolution equations derived for
ample Bragg gratings in the form of slab waveguides with
periodically corrugated surface. Plasmon polaritons pro
gating in a metal film on a nonlinear dielectric substrate w
considered as well as SOI structures. The evolution eq
tions contain third-order nonlinearity~conventional ‘‘gap
solitons’’!, nonlinearity due to coupling of the electroma
netic field to a diffusion equation, which may be consider
as a simple model for the SOI structures and which gives
to an effective nonlocal third-order nonlinearity, nonreson
second-order nonlinearity, which gives rise to an effect
third-order nonlinearity with a complex nonlinear couplin
coefficient, and resonant coupling to the second harmonic
second-order nonlinearity. The stability of solitary solutio
of these equations has been investigated via a numerica
ear stability analysis. Confirming analytic work on the s
bility of MT solitons @26#, it reveals an instability associate
with a complex growth rate with small real part. This h
important implications for numerical simulations as th
growth rate is sensitive to the boundary conditions at
edges of the spatial domain. This type of instability has be
encountered earlier in various continuous~e.g., @44–47#! as
well as discrete@38# systems. Also, numerical instabilitie
arise in such simulations that cannot occur in systems
the nonlinear Schro¨dinger and Karamzin-Sukhorukov equ
tions.
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